

 Bilkent University

Senior Design Project

Gymtor

Low-Level Design Report

Team Members : Emre Tolga Ayan, Umur Göğebakan, Cemal Arda Kızılkaya, Ömer Faruk

Kürklü, Akın Parkan

 Supervisor: Selim Aksoy

Innovation Expert: Veysi İşler

Feb 8, 2021

This report is submitted to the Department of Computer Engineering of Bilkent
University in partial fulfillment of the requirements of the Senior Design Project course
CS491/2.

Introduction 3
Object design trade-offs 3
Interface documentation guidelines 4
Engineering standards (e.g., UML and IEEE) 4
Definitions, acronyms, and abbreviations 4

Cloud Storage 4
Client 4
Movement Ground Truth 4
Machine Learning Model 5
JSON 5
AWS 5

Packages 5
Presentation Tier 6
Logic Tier 7
Data Tier 7

Class Interfaces 8
Presentation Tier 8

ProfileViewer 8
ViewManager 8
ExerciseListManager 9
TrainerManager 9
StatisticsViewer 10
CurrentExerciseView 10
AnalyticsView 10
LogInView 11
SignUpView 12
TodayView 12
HistoryView 13
ScheduleExerciseView 13
ExerciseView 14
AudioManager 14

Logic Tier 15
ComputeManager 15
MachineLearningComputer 15
VideoComputer 16
FeedbackComputer 16
SocialManager 17
AnalyticsManager 17

Data Tier 18
DataManager 18
CloudHandler 18
LocalHandler 19

References 20

1. Introduction
Exercising regularly is one of the key ingredients of a healthy lifestyle. However, due to various

reasons such as not having enough time and motivation due to heavy work loads or not having enough

money to spend money on fitness clubs, most people do not exercise at all. These reasons suggest that

the accessibility aspect of exercising poses a significant problem, which led to the main idea of our

project.

In order to make exercising accessible to more people, our team came up with the idea of a sport

assistant, which is powered by cutting edge deep learning techniques to analyze the body pose of a

person and provide relevant real-time feedback to the user about what can be improved about a certain

exercise in order to help the users in making the most out of their workouts.

In this report, we will be presenting our low level design report for Gymtor. It majorly covers the

detailed explanation of packages we use, and the classes we implement.

1.1. Object design trade-offs
1.1.1. Speed vs Complexity: Gymtor is an application powered by artificial intelligence and machine

learning. While training our data, we can create much complex architectures for better performance.

However, as the model sizes increase, the time necessary to process the real time data and generate an

output increases. Thus, as we increase the complexity, the feedback speed of the application reduces.

1.1.2. Performance vs Speed: For better performance, we may use cloud computing services like

Amazon AWS or Google Cloud. However, sending real time visual data to the server and waiting for

an answer causes high delay. Thus, our options are to use cloud computing with immense computing

power but a delayed service, or local computing with limited computational power but with a low

delay.

1.1.3. Functionality vs Usability: We may add many features such as focusing on a body area by

touching to the screen, or adding the option to customize the feedback we generate, which provides

more functionality to the user. However, as we increase the features, the application becomes more

difficult to use which reduces usability.

1.2. Interface documentation guidelines
In this report, we will follow the following style for demonstrating the classes:

“-” means that attribute or method is private, and “+” means public.

1.3. Engineering standards (e.g., UML and IEEE)
We have used UML standards to create our figures. We have used IEEE referencing standards for our
references [1] and IEEE 730-2014 quality standards [2] for our production.

1.4. Definitions, acronyms, and abbreviations
Abbreviations and some technical terms that have been used in the report are listed here with their

brief explicit definition for a better understanding of the latter sections:

1.4.1. Cloud Storage

HTTP based request responder to retrieve information. Online and can be reached through the

network.

1.4.2. Client

HTTP based request sender. Sends online requests to the backend to retrieve information as a

response.

1.4.3. Movement Ground Truth

List<Float> of 3D point cloud sparse matrices to represent the accurate movement pattern of an

exercise.

class ClassName

Class definition

Attributes

-attribute1: attribute_type
-attribute2: attribute_type

Methods

+method_name(method_param: param_type) : return_type
+method_name(method_param: param_type) : return_type

1.4.4. Machine Learning Model

Trained models to produce certain outputs from a given output according to the learnt/estimated

parameters during the training phase.

1.4.5. JSON

JavaScript Object Notation as a lightweight communication format to store and transfer data.

1.4.6. AWS

Amazon Web Services, a cloud platform to provide computational resources as well as remote

machine instances.

2. Packages

Figure 2: Packages Overview

In our Application, we have designed a three-layer architecture for modularity and scalability. Since

our application makes real-time visual data analysis and real-time feedback generation, we have tried

to keep our model as simple as possible to reduce the complexity of the modules and achieve a better

and a faster performance.

We have presentation tier, logic tier and data tier as three layers. Presentation tier is responsible for

displaying all the visuals and management of them. Logic tier is responsible for computational

operations including machine learning usage. Data tier is responsible for the communication of the

application with the cloud data or local data.

2.1. Presentation Tier

Figure 3: Presentation tier Overview

This tier is responsible for the management of visual and auditory material that is presented to the

user. It includes the main package which is AppManager that handles the interaction between other

packages. ViewManager is responsible for displaying the front-end content of the application.

CurrentExerciseView package is responsible for displaying the video screen to the user with the

generated feedback. It also captures the inputs of the user in this stage, and they are sent to the logic

tier. ExerciseListViewer is responsible for retrieving the exercise plans of the user, displaying them,

or scheduling them. ProfileView is responsible for retrieving and displaying the user-specific data.

Other non-specific visual content is handled in the ViewManager package. AudioManager package is

responsible for playing audio assets. These audio assets include sound effects such as sliding a menu,

clicking on a button, etc. They also include auditory instructions in an exercise session. The

SettingsView package manages the user’s UI related application settings. This might be the theme of

the application, colors, some UI specific personalizations, etc.

2.2. Logic Tier

Figure 4: Logic Tier Overview

Logic tier is responsible for management of all logical operations behind the scenes. It includes a

main ComputeManager which handles all the computations and also is in communication with the

presentation tier. SocialManager is in control of the social activities of Gymtor such as adding

personalized exercise lists, looking at friends activities etc. AnalyticManager computes the

personalised feedbacks, calorie usage etc. ComputerManager handles the machine learning

application of ours.

2.3. Data Tier

Figure 5: Data Tier Overview

Data tier handles our cloud handler and runs on a server unlike the rest of our tiers. It contains a main

DataHandler which is in contact with our logic tier and handles the database appropriately.

CloudHandler handles the cloud specific packages and LocalHandler handles any logical work done

in the server machine.

3. Class Interfaces
3.1. Presentation Tier

3.1.1. ProfileViewer

● changePassword(oldPassword: String, newPassword: String): Updates the password of the

user.
● updateProfilePhoto(image: Image): Updates the profile photo of the user.
● setName(name: String): Updates the name of the user.
● setHeight(height: int): Updates the height of the user.
● setWeight(weight: int): Updates the weight of the user.
● deleteAccount(password: String): Deletes the account of the user.

3.1.2. ViewManager

● setCurrentView(viewName: String): Displays the requested view on the screen.

class ProfileViewer

This class is responsible for handling the changes to the user’s account.

Attributes

-dbc: DBConnector
-userID: String

Methods

+changePassword(oldPassword: String, newPassword: String): boolean
+updateProfilePhoto(image: Image): void
+setName(name: String): void
+setHeight(height: int): void
+setWeight(weight: int): void
+deleteAccount(password: String): void

class ViewManager

This class is responsible for displaying the requested view.

Attributes

None

Methods

+setCurrentView(viewName: String): void

3.1.3. ExerciseListManager

● getExercises(userID: String): Gets the exercise list of the user.
● addExerciseToList(ex: Exercise, userID: String): Adds the exercise to the user’s exercise list.
● removeExerciseFromList(ex: Exercise, userID: String): Removes the exercise from the user’s

exercise list.
● deleteExerciseList(userID: StringD): Deletes the exercise list of the user.

3.1.4. TrainerManager

● detectMovement(frame: Image, movement: Movement): Examines the movement of the user

with the help of the trained model and returns a feedback containing the status of the
examination and the constructed body model with colors.

class ExerciseListManager

This class is responsible for displaying the list of exercises belonging to a user.

Attributes

-dbc: DBConnector
-userID: String

Methods

+getExercises(userID: String) : List<Exercise>
+addExerciseToList(ex: Exercise, userID: String): boolean
+removeExerciseFromList(ex: Exercise, userID: String): boolean
+deleteExerciseList(userID: String): boolean

class TrainerManager

This class is responsible for displaying the feedback to the user’s current movement.

Attributes

-dbc: DBConnector
-userID: String
-exerciseInfo: List<Exercise>

Methods

+detectMovement(frame: Image, movement: Movement): Feedback

3.1.5. StatisticsViewer

● getFeedbacks(userId: String): This method returns the statistics related to the user’s

exercises.

3.1.6. CurrentExerciseView

● getExerciseView(exerciseID: String): This method is used to fetch the exercise information

from the database using the exerciseID and to display it on the screen.

class StatisticsViewer

This class is responsible for displaying the statistics at the end of an exercise session.

Attributes

-dbc: DBConnector
-userID: String

Methods

+getFeedbacks(userId: String): List<String>

class CurrentExerciseView

This class is responsible for displaying the user’s current exercise.

Attributes

-dbc: DBConnector
-exerciseID: String

Methods

+getExerciseView(exerciseID: String): View

3.1.7. AnalyticsView

● getAnalyticts(userID: String): This method is used to fetch the users analytics from the

database and return these analytics as a list of Exercise objects.
● deleteAnalytics(userID: String, analyticsID: String) : This method is used to delete specific

analytics of the user from the database. It requires userID and analyticsID. If the requested
behaviour is successfully done, then this method returns true. Otherwise, it returns false.

3.1.8. LogInView

● handleLogin(email: String, password: String): This method is provided to users to login to the

application. It simply checks if the email exists on the database and if it exists this method
checks if the password is valid or not. If the login request is valid, then this method leads the
user to their profile page.

● handleGoogleLogin(email: String): This method is provided to users to login to the
application. It simply checks if the email exists on the database. If the login request is valid,
then this method leads the user to their profile page.

class AnalyticsView

This class is responsible for displaying the user’s past exercises along with useful statistics.

Attributes

-dbc: DBConnector,
-userID: String
-history: List<Exercise>

Methods

+getAnalyticts(userID: String): List<Exercise>
+deleteAnalytics(userID: String, analyticsID: String): boolean

class LogInView

This class is responsible for providing an interface for viewing the login page of the application.

Attributes

-dbc: DBConnector

Methods

+handleLogin(email: String, password: String): boolean
+handleGoogleLogin(email: String): boolean

3.1.9. SignUpView

● handleSignUp(name: String, email: String, password: String, repeatPassword: String): This

method is provided to users to sign up using their own email and the password that they
specify. This method simply checks if the password and repeatPassword are the same and if
the given email already exists or not.

● handleGoogleSignUp(email: String): This method is provided to users to sign up using their

gmail. This method simply checks if the given email already exists or not.

3.1.10. TodayView

● getTodayView(userID: String, today: TimeStamp): This method is used to fetch user’s

exercise information from the database and put it into the view object.

class SignUpView

This class is responsible for providing an interface for viewing the signup page of the application.

Attributes

 -dbc: DBConnector

Methods

+handleSignUp(name: String, email: String, password: String, repeatPassword: String): boolean
+handleGoogleSignUp(email: String): boolean

class TodayView

This class is responsible for providing an interface for viewing today's exercise information.

Attributes

-dbc: DBConnector,
-userID: String,
-view:View

Methods

+getTodayView(userID: String, today: TimeStamp): View

3.1.11. HistoryView

● getHistoryView(userID: String): This method is used to fetch user’s exercise information

from the database and put them into the history list.
● deleteHistory(userID: String, today: TimeStamp): This method is used to delete the history of

a specific timestamp from the users previous exercise history.

3.1.12. ScheduleExerciseView

● scheduleExercise(userID: String, exerciseID: String, day: TimeStamp): This method is used

to assign a timestamp to users exercise.

class HistoryView

This class is responsible for providing an interface for viewing the previous exercise information.

Attributes

-dbc: DBConnector,
-userID: String,
-history: List<View>

Methods

+getHistoryView(userID: String): List<View>
+deleteHistory(userID: String, today: TimeStamp): boolean

class ScheduleExerciseView

This class is responsible for providing an interface for scheduling an exercise

Attributes

-dbc: DBConnector
-CurrentUserID:String

Methods

+scheduleExercise(userID: String, exerciseID: String, day: TimeStamp): void

3.1.13. ExerciseView

● getExerciseView(userID: String): This method is used to fetch and illustrate the users’

exercises.
● deleteExercise(userID: String, exerciseID: String): This method is used to delete the users

exercise. The userID and the exerciseID are provided.
● updateExercise(userID: String, exerciseID: String): This method is used to update the users

exercise. The userID and the exerciseID are provided.

3.1.14. AudioManager

● generateOutput(feedback: Feedback): This method is used to generate audio output using the

AudioNode instance using the feedback output generated by the MachineLearningComputer
instance.

class ExerciseView

This class is responsible for providing an interface for modifying and visualising the exercises of
the user.

Attributes

-dbc: DBConnector
-CurrentUserID:String
-exerciseID: String

Methods

+getExerciseView(userID: String): void
+deleteExercise(userID: String, exerciseID: String): boolean
+updateExercise(userID: String, exerciseID: String): boolean

class ExerciseView

This class is responsible for providing audio feedback to the movement of the user.

Attributes

-CurrentUserID:String
-exerciseID: String
-AudioComputer: AudioNode
-mlComputer: MachineLearningComputer

Methods

+generateOutput(feedback: Feedback): void

3.2. Logic Tier
3.2.1. ComputeManager

● retrieveVideo(): Retrieve video from video computer.
● predictFromVideo(): Get predictions from machineLearningComputer.
● retrieveFeedbacks(): Get feedback data from feedbackComputer.
● retrieveStats(): Retrieve statistics of the current and previous exercises from

feedbackComputer.

3.2.2. MachineLearningComputer

● poseEstimation(videoFrames: List<Float>): Using the video data, predict the pose of the user,

which will be used later for predicting the accuracy.
● calculateBodyPoints(): Find the critical points of the body that will be used in pose

estimation.

class ComputeManager

This class is responsible for the communication and combination of the computations done.

Attributes

-videoComputer: VideoComputer
-machineLearningComputer: MachineLearningComputer
-feedbackComputer: FeedbackComputer
-appManager: AppManager

Methods

+retrieveVideo(): List<Float>
+predictFromVideo(): List<Float>
+retrieveFeedbacks(): List<Float>
+retrieveStats(): List<Float>

class MachineLearningComputer

This class is responsible for processing the user inputs and extracting useful information from it.

Attributes

-bodyPoints: List<Float>
-criticalAngleValues: List<Float>

Methods

+poseEstimation(videoFrames: List<Float>): List<Float>
+getBodyPoints(): List<Float>
-calculateBodyPoints(): List<Float>

3.2.3. VideoComputer

● generateAnimation(feedback: List<Float>): Based on the feedback, generate an animation

that will demonstrate the correct way of doing the exercise.

3.2.4. FeedbackComputer

● isMovementCorrect(predictions: List<Float>): Determine whether the exercise of the user is

correct in the threshold limitations.
● generateFeedback(predictions: List<Float>): Generate feedback based on the exercise

correctness predictions.

class VideoComputer

This class is responsible for generating visual guides and animations based on the user video input
and the feedback generated.

Attributes

-animator: Animator
-frame_per_sec: Integer

Methods

+generateAnimation(feedback: List<Float>): List<Float>
-setAnimator(animator: Animator): void

class FeedbackComputer

This class is responsible for generating feedback based on the predictions and ground truths.

Attributes

-mov_ids_and_angle_thresholds: List<Float>

Methods

+isMovementCorrect(predictions: List<Float>): boolean
+generateFeedback(predictions: List<Float>): List<Float>

3.2.5. SocialManager

● uploadExercises(): Upload custom exercise plans to the social hub so that friends can retrieve

it.
● retrieveFriendsData(): Retrieve friends, and their shared data.

3.2.6. AnalyticsManager

● updateCaloriesDB(caloriesData: List<Float>): Calculate and update the calories burnt in the

exercise, and save the data to the database.
● updateTimeDB(timeData: List<Float>): Save the time spent for the exercises to the database.
● retrieveProgressFromDB(): Retrieve previous statistics of the user from the database.
● generateCharts(): Generate charts based on the data in the database.

class SocialManager

This class is responsible for sharing personalized exercise lists, looking at friends activities etc.

Attributes

-dbConnect: DBConnector
-friendsIDs: List<Float>
-exercisePlans: List<Float>

Methods

+setDbConnector(dbConnector: DBConnector): void
+setFriends(frendIDs: List<Float>): void
+setExercises(exercises: List<Float>): void
+uploadExercises(): void
+retrieveFriendsData(): List<Float>

class AnalyticsManager

This class is responsible for generating and retrieving exercise statistics.

Attributes

-dbConnect: DBConnector
-chartGenerator: ChartGenerator

Methods

+setDbConnector(dbConnector: DBConnector): void
+updateCaloriesDB(caloriesData: List<Float>): void
+updateTimeDB(timeData: List<Float>): void
+retrieveProgressFromDB(): List<Float>
+generateCharts(): List<Float>

3.3. Data Tier
3.3.1. DataManager

● dbConnect: is the connection class which holds the confidentials required to make HTML

connections.
3.3.2. CloudHandler

class DataManager

This package is used for managing the operations on the database based on the user’s interactions
with the app.

Attributes

-dbConnect: DBConnector

Methods

+ setConnection(dbConnect: DBConnector) : void
+ getContact() : Contact
+ addContact(contact : Contact) : void
+ deleteContact (name : String) : void
+ setSettings(i : int, p : int) : void
+ addRelative(name : String, picPath : String) : void
+ setRelative(name : String, picPath : String) : void
+ deleteRelative(name : String) : void
+ reset() : void

class CloudHandler

This package is used for handling the data in the database. In database user information like
username password, number of calories burnt, amount of time has been spent on each exercise,
friend information are stored.

Attributes

-users: HashMap<username, userKey>
-exercises: List<Exercise>
-exercisePlans: HashMap<planKey: String ,ExercisePlan>
-userData: HashMap<userKey, User>
-complaints: List<Complaint>

Methods

+ setConnection(dbConnect: DBConnector) : void
+ newExercisePlan(dbConnect: DBConnector, ep: ExercisePlan): String
+ newExercise(e: Exercise): String
+ newUser(dbConnect: DBConnector, user: User): String
+ newComplaint(dbConnect: DBConnector, cp: complaint): String
+ setSettings(i : int, p : int) : void
+ reset() : void

● Cloud Storage holds information for social networkability.
● All users data, exercises and exercise plans will be held here for other users to reach.
● Complaints will be held here for admin users to reach.

3.3.3. LocalHandler

● All the required material for the app to function on users' phones will be held here.
● Static exercises will be requested from the cloud and will be stored in local phone storage.

Exercise plans will also be stored here.
● All the user data will be held here.

class LocalHandler

This package is used for handling the information obtained from VideoComputer and
MachineLearningComputer. Since it can be inefficient to handle them on the server side. (Cloud
side)

Attributes

-exercises: List<Exercise>
-exercisePlans: HashMap<ExercisePlan>
-user: User
-activityHistory: ActivityHistory

Methods

+ setConnection(dbConnect: DBConnector) : void
+ setExercises(dbConnect: DBConnector): List<Exercise>
+ setExercisePlan(dbConnect: DBConnector ,planKey: String): ExercisePlan
+ newExercisePlan(ep: ExercisePlan): String
+ setSettings(i : int, p : int) : void
+ reset() : void

4. References
[1] “IEEE REFERENCE GUIDE.” [Online]. Available:
https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf.

[2] “IEEE 730-2014 - IEEE Standard for Software Quality Assurance Processes,” IEEE SA - The
IEEE Standards Association - Home. [Online]. Available:
https://standards.ieee.org/standard/730-2014.html. [Accessed: 08-Feb-2021].

